Dispersion vs. anti-diffusion: Well-posedness in variable coefficient and quasilinear equations of KdV-type

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIABLE COEFFICIENT THIRD ORDER KdV TYPE OF EQUATIONS

We show that the integrable subclassess of the equations q,t = f(x, t) q,3 + H(x, t, q, q,1) are the same as the integrable subclassess of the equations q,t = q,3 + F (q, q,1).

متن کامل

Variable Coefficient KdV Equations and Waves in Elastic Tubes

We present a simplified one-dimensional model for pulse wave propagation through fluid-filled tubes with elastic walls, which takes into account the elasticity of the wall as well as the tapering effect. The spatial dynamics in this model is governed by a variable coefficient KdV equation with conditions given at the inflow site. We discuss an existence theory for the associated evolution equat...

متن کامل

Sharp Global Well - Posedness for Kdv and Modified Kdv On

The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all L 2-based Sobolev spaces H s where local well-posedness is presently known, apart from the H 1 4 (R) endpoint for mKdV. The result for KdV relies on a new method for co...

متن کامل

Global Well-posedness of a System of Nonlinearly Coupled Kdv Equations of Majda and Biello∗

This paper addresses the problem of global well-posedness of a coupled system of Korteweg–de Vries equations, derived by Majda and Biello in the context of nonlinear resonant interaction of Rossby waves, in a periodic setting in homogeneous Sobolev spaces Ḣs, for s≥0. Our approach is based on a successive time-averaging method developed by Babin, Ilyin and Titi [A.V. Babin, A.A. Ilyin and E.S. ...

متن کامل

Well-Posedness for Semi-Relativistic Hartree Equations of Critical Type

We prove local and global well-posedness for semi-relativistic, nonlinear Schrödinger equations i∂tu = √ −∆+ mu+F (u) with initial data in H(R), s ≥ 1/2. Here F (u) is a critical Hartree nonlinearity that corresponds to Coulomb or Yukawa type self-interactions. For focusing F (u), which arise in the quantum theory of boson stars, we derive a sufficient condition for global-in-time existence in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2013

ISSN: 0022-2518

DOI: 10.1512/iumj.2013.62.5049